Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.439
Filtrar
1.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578294

RESUMO

In Morocco, cutaneous leishmaniasis (CL) caused by Leishmania (L.) tropica is an important health problem. Despite the high incidence of CL in the country, the genomic heterogeneity of these parasites is still incompletely understood. In this study, we sequenced the genomes of 14 Moroccan isolates of L. tropica collected from confirmed cases of CL to investigate their genomic heterogeneity. Comparative genomics analyses were conducted by applying the recently established Genome Instability Pipeline (GIP), which allowed us to conduct phylogenomic and principal components analyses (PCA), and to assess genomic variations at the levels of the karyotype, gene copy number, single nucleotide polymorphisms (SNPs) and small insertions/deletions (INDELs) variants. Read-depth analyses revealed a mostly disomic karyotype, with the exception of the stable tetrasomy of chromosome 31. In contrast, we identified important gene copy number variations across all isolates, which affect known virulence genes and thus were probably selected in the field. SNP-based cluster analysis of the 14 isolates revealed a core group of 12 strains that formed a tight cluster and shared 45.1 % (87 751) of SNPs, as well as two strains (M3015, Ltr_16) that clustered separately from each other and the core group, suggesting the circulation of genetically highly diverse strains in Morocco. Phylogenetic analysis, which compared our 14 L. tropica isolates against 40 published genomes of L. tropica from a diverse array of locations, confirmed the genetic difference of our Moroccan isolates from all other isolates examined. In conclusion, our results indicate potential regional variations in SNP profiles that may differentiate Moroccan L. tropica from other L. tropica strains circulating in endemic countries in the Middle East. Our report paves the way for future research with a larger number of strains that will allow correlation of diverse phenotypes (resistance to treatments, virulence) and origins (geography, host species, year of isolation) to defined genomic signals such as gene copy number variations or SNP profiles that may represent interesting biomarker candidates.


Assuntos
Leishmania tropica , Leishmaniose Cutânea , Humanos , Leishmania tropica/genética , Filogenia , Variações do Número de Cópias de DNA , Marrocos/epidemiologia , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Genômica
2.
PLoS Negl Trop Dis ; 18(4): e0012085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578804

RESUMO

BACKGROUND: In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L. tropica, causing zoonotic visceral leishmaniasis (VL), zoonotic cutaneous leishmaniasis (CL) and anthroponotic CL, respectively. Despite animal models and genomic/transcriptomic studies provided important insights, the pathogenic determinants modulating the development of VL and CL are still poorly understood. This work aimed to identify host transcriptional signatures shared by cells infected with L. infantum, L. major, and L. tropica, as well as specific transcriptional signatures elicited by parasites causing VL (i.e., L. infantum) and parasites involved in CL (i.e., L. major, L. tropica). METHODOLOGY/PRINCIPAL FINDINGS: U937 cells differentiated into macrophage-like cells were infected with L. infantum, L. major and L. tropica for 24h and 48h, and total RNA was extracted. RNA sequencing, performed on an Illumina NovaSeq 6000 platform, was used to evaluate the transcriptional signatures of infected cells with respect to non-infected cells at both time points. The EdgeR package was used to identify differentially expressed genes (fold change > 2 and FDR-adjusted p-values < 0.05). Then, functional enrichment analysis was employed to identify the enriched ontology terms in which these genes are involved. At 24h post-infection, a common signature of 463 dysregulated genes shared among all infection conditions was recognized, while at 48h post-infection the common signature was reduced to 120 genes. Aside from a common transcriptional response, we evidenced different upregulated functional pathways characterizing L. infantum-infected cells, such as VEGFA-VEGFR2 and NFE2L2-related pathways, indicating vascular remodeling and reduction of oxidative stress as potentially important factors for visceralization. CONCLUSIONS: The identification of pathways elicited by parasites causing VL or CL could lead to new therapeutic strategies for leishmaniasis, combining the canonical anti-leishmania compounds with host-directed therapy.


Assuntos
Leishmania infantum , Leishmania major , Leishmania tropica , Leishmaniose Cutânea , Leishmaniose Visceral , Animais , Humanos , Leishmania tropica/genética , Leishmania infantum/genética , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Macrófagos
3.
Parasitol Res ; 123(4): 185, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632113

RESUMO

Leishmania braziliensis (L. braziliensis) causes cutaneous leishmaniasis (CL) in the New World. The costs and the side effects of current treatments render imperative the development of new therapies that are affordable and easy to administer. Topical treatment would be the ideal option for the treatment of CL. This underscores the urgent need for affordable and effective treatments, with natural compounds being explored as potential solutions. The alkaloid piperine (PIP), the polyphenol curcumin (CUR), and the flavonoid quercetin (QUE), known for their diverse biological properties, are promising candidates to address these parasitic diseases. Initially, the in vitro cytotoxicity activity of the compounds was evaluated using U-937 cells, followed by the assessment of the leishmanicidal activity of these compounds against amastigotes of L. braziliensis. Subsequently, a golden hamster model with stationary-phase L. braziliensis promastigote infections was employed. Once the ulcer appeared, hamsters were treated with QUE, PIP, or CUR formulations and compared to the control group treated with meglumine antimoniate administered intralesionally. We observed that the three organic compounds showed high in vitro leishmanicidal activity with effective concentrations of less than 50 mM, with PIP having the highest activity at a concentration of 8 mM. None of the compounds showed cytotoxic activity for U937 macrophages with values between 500 and 700 mM. In vivo, topical treatment with QUE daily for 15 days produced cured in 100% of hamsters while the effectiveness of CUR and PIP was 83% and 67%, respectively. No failures were observed with QUE. Collectively, our data suggest that topical formulations mainly for QUE but also for CUR and PIP could be a promising topical treatment for CL. Not only the ease of obtaining or synthesizing the organic compounds evaluated in this work but also their commercial availability eliminates one of the most important barriers or bottlenecks in drug development, thus facilitating the roadmap for the development of a topical drug for the management of CL caused by L. braziliensis.


Assuntos
Alcaloides , Antiprotozoários , Benzodioxóis , Curcumina , Leishmania braziliensis , Leishmaniose Cutânea , Piperidinas , Alcamidas Poli-Insaturadas , Cricetinae , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Curcumina/farmacologia , Leishmaniose Cutânea/parasitologia , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Mesocricetus , Antiprotozoários/farmacologia
4.
Mem Inst Oswaldo Cruz ; 119: e230182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511814

RESUMO

BACKGROUND: Leishmaniases encompass a spectrum of neglected diseases caused by parasites of the genus Leishmania, grouped in two forms: tegumentary and visceral leishmaniasis. OBJECTIVES: In this study, we propose Friend Virus B NIH Jackson (FVB/NJ) mouse strain as a new experimental model of infection with Leishmania (Leishmania) amazonensis, the second most prevalent agent of tegumentary leishmaniasis in Brazil. METHODS AND FINDINGS: We performed in vitro infections of FVB/NJ macrophages and compared them with BALB/c macrophages, showing that BALB/c cells have higher infection percentages and a higher number of amastigotes/cell. Phagocytosis assays indicated that BALB/c and FVB/NJ macrophages have similar capacity to uptake parasites after 5 min incubations. We also investigated promastigotes' resistance to sera from FVB/NJ and BALB/c and observed no difference between the two sera, even though FVB/NJ has a deficiency in complement components. Finally, we subcutaneously infected FVB/NJ and BALB/c mice with 2 × 106 parasites expressing luciferase. Analysis of lesion development for 12 weeks showed that FVB/NJ and BALB/c mice have similar lesion profiles and parasite burdens. MAIN CONCLUSIONS: This work characterises for the first time the FVB/NJ mouse as a new model for tegumentary leishmaniasis caused by Leishmania (L.) amazonensis.


Assuntos
Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Leishmaniose , Camundongos , Animais , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos BALB C
5.
Med Microbiol Immunol ; 213(1): 4, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532203

RESUMO

Besides being scarce, the drugs available for treating cutaneous leishmaniasis have many adverse effects. Ozone is an option to enhance the standard treatment due to the wound-healing activity reported in the literature. In this study, we evaluated the efficiency of ozonated sunflower oil as an adjuvant in treating cutaneous lesions caused by Leishmania amazonensis. BALB/c mice were infected with L. amazonensis, and after the lesions appeared, they were treated in four different schedules using the drug treatment with meglumine antimoniate (Glucantime®), with or without ozonated oil. After thirty days of treatment, the lesions' thickness and their parasitic burden, blood leukocytes, production of NO and cytokines from peritoneal macrophages and lymph node cells were analyzed. The group treated with ozonated oil plus meglumine antimoniate showed the best performance, improving the lesion significantly. The parasitic burden showed that ozonated oil enhanced the leishmanicidal activity of the treatment, eliminating the parasites in the lesion. Besides, a decrease in the TNF levels from peritoneal macrophages and blood leukocytes demonstrated an immunomodulatory action of ozone in the ozonated oil-treated animals compared to the untreated group. Thus, ozonated sunflower oil therapy has been shown as an adjuvant in treating Leishmania lesions since this treatment enhanced the leishmanicidal and wound healing effects of meglumine antimoniate.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Ozônio , Animais , Camundongos , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Óleo de Girassol/uso terapêutico , Antiprotozoários/farmacologia , Meglumina/farmacologia , Meglumina/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Cicatrização , Ozônio/uso terapêutico , Camundongos Endogâmicos BALB C
6.
PLoS Negl Trop Dis ; 18(3): e0012050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527083

RESUMO

Pharmacophores such as hydroxyethylamine (HEA) and phthalimide (PHT) have been identified as potential synthons for the development of compounds against various parasitic infections. In order to further advance our progress, we conducted an experiment utilising a collection of PHT and HEA derivatives through phenotypic screening against a diverse set of protist parasites. This approach led to the identification of a number of compounds that exhibited significant effects on the survival of Entamoeba histolytica, Trypanosoma brucei, and multiple life-cycle stages of Leishmania spp. The Leishmania hits were pursued due to the pressing necessity to expand our repertoire of reliable, cost-effective, and efficient medications for the treatment of leishmaniases. Antileishmanials must possess the essential capability to efficiently penetrate the host cells and their compartments in the disease context, to effectively eliminate the intracellular parasite. Hence, we performed a study to assess the effectiveness of eradicating L. infantum intracellular amastigotes in a model of macrophage infection. Among eleven L. infantum growth inhibitors with low-micromolar potency, PHT-39, which carries a trifluoromethyl substitution, demonstrated the highest efficacy in the intramacrophage assay, with an EC50 of 1.2 +/- 3.2 µM. Cytotoxicity testing of PHT-39 in HepG2 cells indicated a promising selectivity of over 90-fold. A chemogenomic profiling approach was conducted using an orthology-based method to elucidate the mode of action of PHT-39. This genome-wide RNA interference library of T. brucei identified sensitivity determinants for PHT-39, which included a P-type ATPase that is crucial for the uptake of miltefosine and amphotericin, strongly indicating a shared route for cellular entry. Notwithstanding the favourable properties and demonstrated efficacy in the Plasmodium berghei infection model, PHT-39 was unable to eradicate L. major infection in a murine infection model of cutaneous leishmaniasis. Currently, PHT-39 is undergoing derivatization to optimize its pharmacological characteristics.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmania , Leishmaniose Cutânea , Humanos , Animais , Camundongos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Anfotericina B/uso terapêutico , Leishmaniose Cutânea/parasitologia , Ftalimidas/farmacologia , Ftalimidas/uso terapêutico
7.
Am J Trop Med Hyg ; 110(4): 656-662, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38442428

RESUMO

Post-kala-azar dermal leishmaniasis (PKDL), the dermal sequel to visceral leishmaniasis (VL), is characterized by hypopigmented macules (macular) and/or papules and nodules (polymorphic). Post-kala-azar dermal leishmaniasis plays a significant role in disease transmission, emphasizing the need for monitoring chemotherapeutic effectiveness. Accordingly, this study aimed to quantify the parasite burden in PKDL patients after treatment with miltefosine by a quantitative polymerase chain reaction (qPCR). A Leishmania kinetoplastid gene-targeted qPCR was undertaken using DNA from skin biopsy specimens of patients with PKDL at three time points, i.e., at disease presentation (week 0, n = 157, group 1), upon completion of treatment (week 12, n = 39, group 2), and at any time point 6 months after completion of treatment (week ≥36, n = 54, group 3). A cycle threshold (Ct) <30 was considered the cutoff for positivity, and load was quantified as the number of parasites/µg genomic DNA (gDNA); cure was considered when samples had a Ct >30. The parasite load at disease presentation (group 1) was 10,769 (1,339-80,441)/µg gDNA (median [interquartile range]). In groups 2 and 3, qPCR results were negative in 35/39 cases (89.7%) and 48/54 cases (88.8%), respectively. In the 10/93 (10.8%) qPCR-positive cases, the parasite burdens in groups 2 and 3 were 2,420 (1,205-5,661)/µg gDNA and 22,195 (5,524-100,106)/µg gDNA, respectively. Serial monitoring was undertaken in 45 randomly selected cases that had completed treatment; all cases in groups 2 or 3 had a Ct >30, indicating cure. Overall, qPCR confirmed an 89.2% cure (as 83/93 cases showed parasite clearance), and the persistent qPCR positivity was attributed to nonadherence to treatment or unresponsiveness to miltefosine and remains to be investigated.


Assuntos
Leishmania donovani , Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Fosforilcolina/análogos & derivados , Humanos , Leishmaniose Visceral/parasitologia , Leishmaniose Cutânea/parasitologia , DNA
8.
Org Biomol Chem ; 22(9): 1812-1820, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328995

RESUMO

A library of hybrid molecules is developed based on the common chemical features shared by clemastine and tamoxifen both of which are well known for their antileishmanial activities. In the initial screening against Leishmania major and L. amazonensis promastigotes, as well as cytotoxicity assays using HepG2 cells, several hybrids showed submicromolar activity against the parasite and no toxicity against human cells. The compounds with an EC50 < 2 µM against promastigotes of both species and a selectivity index >10 were further characterized against intracellular amastigotes as well as promastigotes of species that cause both visceral and cutaneous leishmaniasis, such as L. infantum and L. braziliensis, respectively. These sequential screenings revealed the high pan-activity of this class of molecules against these species, with several compounds displaying an EC50 ≤ 2 µM against both promastigotes and intracellular amastigotes. Two of them were identified as the potential templates for lead optimization of this series having shown the highest activities against all species in both stages of parasite. The present findings can serve as a good starting point in the search for novel antileishmanial compounds that are easy to access and highly active.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Humanos , Animais , Camundongos , Clemastina/uso terapêutico , Macrófagos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Antiprotozoários/farmacologia , Células Hep G2 , Camundongos Endogâmicos BALB C
9.
ChemMedChem ; 19(8): e202300679, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38317307

RESUMO

Cutaneous leishmaniasis caused by the intracellular parasite Leishmania major, exhibits significant public health challenge worldwide. With limited treatment options available, the identification of novel therapeutic targets is of paramount importance. Present study manifested the crucial role of ATG8 protein as a potential target in combating L. major infection. Using machine learning algorithms, we identified non-conserved motifs within the ATG8 in L. major. Subsequently, a peptide library was generated based on these motifs, and three peptides were selected for further investigation through molecular docking and molecular dynamics simulations. Surface Plasmon Resonance (SPR) experiments confirmed the direct interaction between ATG8 and the identified peptides. Remarkably, these peptides demonstrated the ability to cross the parasite membrane and exert profound effects on L. major. Peptide treatment significantly impacted parasite survival, inducing alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, indicating their involvement in autophagy regulation within L. major. In vitro studies revealed that the selected peptides effectively decreased the parasite load within the infected host cells. Encouragingly, in vivo experiments corroborated these findings, demonstrating a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II, a known autophagy marker within the host cells. Collectively, our findings highlight the efficacy of these novel peptides in targeting L. major ATG8 and disrupting parasite survival, wherein P2 is showing prominent effect on L. major as compared to P1. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis.


Assuntos
Interações Hospedeiro-Parasita , Leishmaniose Cutânea , Humanos , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Leishmaniose Cutânea/parasitologia , Autofagia
10.
mSphere ; 9(3): e0081423, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421172

RESUMO

Over a 6-month span, three patients under 5 years old with cutaneous leishmaniasis presented to the Pediatric Infectious Diseases Clinic at the University of Texas Southwestern Medical Center/Children's Health Dallas. None had traveled outside of northern Texas/southern Oklahoma; all had Leishmania mexicana infections confirmed by PCR. We provide case descriptions and images to increase the awareness of this disease among United States (US) physicians and scientists. Two patients responded to fluconazole, but the youngest required topical paromomycin. Combining these cases with guidelines and our literature review, we suggest that (i) higher doses (10-12 mg/kg/day) of fluconazole should be considered in young children to maximize likelihood and rapidity of response and (ii) patients should transition to alternate agents if they do not respond to high-dose fluconazole within 6 weeks. Furthermore, and of particular interest to the broad microbiology community, we used samples from these cases as a proof of concept to propose a mechanism to strain-type US-endemic L. mexicana. For our analysis, we sequenced three housekeeping genes and the internal transcribed sequence 2 of the ribosomal RNA gene. We identified genetic changes that not only allow us to distinguish US-based L. mexicana strains from strains found in other areas of the Americas but also establish polymorphisms that differ between US isolates. These techniques will allow documentation of genetic changes in this parasite as its range expands. Hence, our cases of cutaneous leishmaniasis provide significant evolutionary, treatment, and public health implications as climate change increases exposure to formerly tropical diseases in previously non-endemic areas. IMPORTANCE: Leishmaniasis is a parasitic disease that typically affects tropical regions worldwide. However, the vector that carries Leishmania is spreading northward into the United States (US). Within a 6-month period, three young cutaneous leishmaniasis patients were seen at the Pediatric Infectious Diseases Clinic at the University of Texas Southwestern Medical Center/Children's Health Dallas. None had traveled outside of northern Texas and southern Oklahoma. We document their presentations, treatments, and outcomes and compare their management to clinical practice guidelines for leishmaniasis. We also analyzed the sequences of three critical genes in Leishmania mexicana isolated from these patients. We found changes that not only distinguish US-based strains from strains found elsewhere but also differ between US isolates. Monitoring these sequences will allow tracking of genetic changes in parasites over time. Our findings have significant US public health implications as people are increasingly likely to be exposed to what were once tropical diseases.


Assuntos
Doenças Transmissíveis , Leishmania mexicana , Leishmaniose Cutânea , Pré-Escolar , Humanos , Fluconazol/uso terapêutico , Leishmania mexicana/genética , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Texas/epidemiologia , Estados Unidos/epidemiologia
11.
Zoonoses Public Health ; 71(3): 267-273, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336960

RESUMO

American cutaneous leishmaniasis (ACL) is the most prevalent form of leishmaniasis, associated with an ulcerative and stigmatizing mucocutaneous pathology. This study assessed the incidence of Leishmania (Viannia) braziliensis in members of the Argentine Army who were exposed to sandfly bites in Iguazú National Park (INP), northeastern Argentina, during an outbreak of ACL in 2019, and the presence of Leishmania in rodents, opossums and phlebotomine sandflies collected in the area of exposure. Samples from military personnel, wild animals and phlebotomine sandflies were analysed. A total of 20 (40%) patients among the Army personnel and two Akodon montensis rodents (11%) were positive for the presence of Leishmania sp. genes by PCR, while Nyssomyia whitmani and Migonemyia migonei, competent vectors of Leishmania, were also found at the same site. Sequences of hsp70 DNA fragments obtained from human samples confirmed the identity of L. (V.) braziliensis. The risk to which military personnel carrying out activities in the forest are exposed is highlighted, and this risk extends to any worker and visitor who circulates without protection in the INP, coming into contact with transmission "hot spots" due to the concentration of vectors, reservoirs and/or parasites.


Assuntos
Leishmania braziliensis , Leishmania , Leishmaniose Cutânea , Leishmaniose , Psychodidae , Humanos , Animais , Argentina/epidemiologia , Insetos Vetores/parasitologia , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/veterinária , Leishmaniose Cutânea/parasitologia , Leishmania/genética , Leishmania braziliensis/genética , Psychodidae/parasitologia , Florestas , Brasil/epidemiologia , Leishmaniose/veterinária
12.
Int J Parasitol Drugs Drug Resist ; 24: 100525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359731

RESUMO

Leishmaniasis is a disease caused by Leishmania spp., affecting millions of people around the world. For decades, its treatment has been based on pentavalent antimonials, which notoriously cause toxic side effects in patients. In this study, epoxy-α-lapachone incorporated into an oil-in-water-type microemulsion (ELAP-ME) and meglumine antimoniate (MA) were assayed in monotherapy and in combination (ELAP-ME/MA) in BALB/c mice infected with Leishmania (Leishmania) amazonensis. In general, there was a reduction in paw lesion size (up to 37% reduction) and decreases of parasite loads in the footpad (∼40%) and lymph nodes (∼31%) of animals treated with ELAP-ME/MA, when compared to the non-treated control groups. Analyses of serum biochemical parameters revealed that the ELAP-ME/MA showed lower renal and hepatic toxicity when compared to MA 2-doses/week monotherapy. These findings indicate that the ELAP-ME/MA combination may be a promising approach for the treatment of cutaneous leishmaniasis.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose Cutânea , Naftoquinonas , Compostos Organometálicos , Humanos , Animais , Camundongos , Antimoniato de Meglumina/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Meglumina/uso terapêutico , Compostos Organometálicos/uso terapêutico , Camundongos Endogâmicos BALB C
13.
Parasitol Int ; 100: 102865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38341021

RESUMO

In visceral and mucocutaneous leishmaniasis, humoral immune response can reflect disease severity and parasite burden. Cutaneous leishmaniasis (CL) in Sri Lanka is caused by a usually visceralizing parasite, Leishmania donovani. We assessed the parasite burden (relative quantity-RQ) in 190 CL patients using quantitative real-time PCR (qPCR-with primers designed for this study) and smear microscopy, then correlated it with clinical parameters and IgG response. RQ of parasite DNA was determined with human-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the internal control. The qPCR sensitivity was tested with serially diluted DNA from cultured L. donovani parasites. Smears were assigned a score based on number of parasites per high power field. Data from previous studies were used for comparison and correlation; nested Internal Transcribed Spacer 1 (ITS1) PCR as reference standard (RS) and IgG antibody titers to the Leishmania rKRp42 antigen as the immune response. The qPCR amplified and quantified 86.8% of the samples while demonstrating a fair and significant agreement with ITS1-PCR and microscopy. Parasite burden by qPCR and microscopy were highly correlated (r = 0.76; p = 0.01) but showed no correlation with the IgG response (r = 0.056; p = 0.48). Corresponding mean RQs of IgG titers grouped by percentiles, showed no significant difference (p = 0.93). Mean RQ was higher in early lesions (p = 0.04), decreased with lesion size (p = 0.12) and slightly higher among papules, nodules and wet ulcers (p = 0.72). Our study established qPCR's efficacy in quantifying parasite burden in Sri Lankan CL lesions but no significant correlation was observed between the parasite burden and host IgG response to the Leishmania rKRP42 antigen.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Parasitos , Animais , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Sri Lanka/epidemiologia , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Leishmania donovani/genética , DNA , Imunoglobulina G
14.
Exp Parasitol ; 259: 108710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350521

RESUMO

Sri Lanka reports a large focus of Leishmania donovani caused cutaneous leishmaniasis (CL). Subsequent emergence of visceral leishmaniasis (VL) was also reported recently. Expansion of the on-going disease outbreak and many complexities indicate urgent need to enhance early case detection methods. In vitro cultivation (IVC) of parasites causing visceral leishmaniasis (VL) is important for disease confirmation and to obtain sufficient quantities of parasites required in many scientific studies. IVC is carried out as a useful second line investigation for direct microscopy negative patients with CL in this setting. Along with the emergence of VL, current study was carried out to evaluate in vitro growth of local VL parasites and to identify their differences associated with in vitro growth characteristics. Routine parasitological diagnostic methods, i.e., light microscopy (LM), polymerase chain reaction (PCR) were used for confirmation of suspected cases. Lesion samples from 125 suspected CL cases and bone marrow or splenic aspirations from 125 suspected VL patients were used to inoculate IVCs. Media M199 (about 70 µl) supplemented with 15-20% of heat inactivated fetal bovine serum was used for initial culturing procedures in capillaries. Capillary cultures were monitored daily. Total of 44 different compositions/conditions were used for evaluating in vitro growth of VL causing parasite. Daily records on parasite counts, morphological appearance (size, shape, and wriggly movements) were maintained. In vitro transformation of Leishmania promastigotes to amastigotes and outcome of the attempts on recovery of live Leishmania from culture stabilates was also compared between CL and VL parasites. Proportion of cultures showing a transformation of promastigotes were 40/45 (88.9%) and 4/10 (40.0%) for CL and VL respectively. In the transformed cultures, parasites showing typical shape, size and movement patterns were less in VL (1/4, 25.0%) compared to CL (28/40, 70.0%). CL cultures showed a growth up to mass culturing level with mean duration of two weeks while it was about five weeks for VL cultures. Proportion of cultures that reached a parasite density of 1 × 106 cells/ml (proceeded to mass cultures) was significantly low in VL (4/10, 40%) as compared to CL (28/40, 70.0%). None of media compositions/conditions were successful for mass culturing of VL parasites while all of them were shown to be useful for growing CL strains. Also in vitro transformation to amastigote form and recovering of culture stabilates were not successful compared to CL. There were clear differences between in vitro growth of Leishmania parasites causing local CL and VL. Further studies are recommended for optimization of in vitro culturing of VL parasite which will be invaluable to enhance case detection in future.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Parasitos , Animais , Humanos , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/parasitologia , Sri Lanka/epidemiologia , Leishmaniose Cutânea/parasitologia , Biópsia
15.
J Trace Elem Med Biol ; 83: 127404, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364464

RESUMO

BACKGROUND: Cutaneous leishmaniasis (LC) is an infectious vector-borne disease caused by parasites belonging to the genus Leishmania. Metallic nanoparticles (MNPs) have been investigated as alternatives for the treatment of LC owing to their small size and high surface area. Here, we aimed to evaluate the effect of MNPs in the treatment of LC through experimental, in vitro and in vivo investigations. METHODS: The databases used were MEDLINE/ PubMed, Scopus, Web of Science, Embase, and Science Direct. Manual searches of the reference lists of the included studies and grey literature were also performed. English language and experimental in vitro and in vivo studies using different Leishmania species, both related to MNP treatment, were included. This study was registered in PROSPERO (CRD42021248245). RESULTS: A total of 93 articles were included. Silver nanoparticles are the most studied MNPs, and L. tropica is the most studied species. Among the mechanisms of action of MNPs in vitro, we highlight the production of reactive oxygen species, direct contact of MNPs with the biomolecules of the parasite, and release of metal ions. CONCLUSION: MNPs may be considered a promising alternative for the treatment of LC, but further studies are needed to define their efficacy and safety.


Assuntos
Leishmania tropica , Leishmaniose Cutânea , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/uso terapêutico , Prata/uso terapêutico , Prata/farmacologia , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia
16.
Iran J Med Sci ; 49(2): 121-129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356483

RESUMO

Background: Stem cell-derived secretome (SE) released into the extracellular space contributes to tissue repair. The present study aimed to investigate the impact of isolated secretome (SE) from adipose-derived mesenchymal stem cells (ASCs) on Leishmania major (L. major) lesions in BALB/c mice. Methods: This experimental study was conducted at Ahvaz University of Medical Sciences (Ahvaz, Iran) in 2021. Forty female BALB/c mice were infected with stationary phase promastigotes through intradermal injection in the bottom of their tail and randomly divided into four groups (n=10 per group). The mice were given SE (20 mg/mL), either alone or in combination with Glucantime (GC, 20 mg/mL/Kg), meglumine antimoniate (20 mg/mL/Kg) for the GC group, and phosphate-buffered saline (PBS) for the control group. After eight weeks, the lesion size, histopathology, the levels of Interleukin 10 (IL-10), and Interleukin 12 (IL-12) were assessed. For the comparison of values between groups, the parametric one-way ANOVA was used to assess statistical significance. Results: At the end of the experiment, the mice that received SE had smaller lesions (4.56±0.83 mm versus 3.62±0.59 mm, P=0.092), lower levels of IL-10 (66.5±9.7 pg/mL versus 285.4±25.2 pg/mL, P<0.001), and higher levels of IL-12 (152.2±14.2 pg/mL versus 24.2±4.4 pg/mL, P<0.001) than the control. Histopathology findings revealed that mice treated with SE had a lower parasite burden in lesions and spleen than the control group. Conclusion: The current study demonstrated that ADSC-derived SE could protect mice infected with L. major against leishmaniasis.


Assuntos
Leishmania major , Leishmaniose Cutânea , Parasitos , Feminino , Animais , Camundongos , Leishmaniose Cutânea/terapia , Leishmaniose Cutânea/parasitologia , Interleucina-10 , Secretoma , Antimoniato de Meglumina , Interleucina-12
17.
Microbiol Spectr ; 12(3): e0347823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38299832

RESUMO

The hallmark characteristic of macrophages lies in their inherent plasticity, allowing them to adapt to dynamic microenvironments. Leishmania strategically modulates the phenotypic plasticity of macrophages, creating a favorable environment for intracellular survival and persistent infection through regulatory cytokine such as interleukin (IL)-10. Nevertheless, these effector cells can counteract infection by modulating crucial cytokines like IL-12 and key components involved in its production. Using sophisticated tool of single-cell assay for transposase accessible chromatin (ATAC) sequencing, we systematically examined the regulatory axis of IL-10 and IL-12 in a time-dependent manner during Leishmania major infection in macrophages Our analysis revealed the cellular heterogeneity post-infection with the regulators of IL-10 and IL-12, unveiling a reciprocal relationship between these cytokines. Notably, our significant findings highlighted the presence of sleepy macrophages and their pivotal role in mediating reciprocity between IL-10 and IL-12. To summarize, the roles of cytokine expression, transcription factors, cell cycle, and epigenetics of host cell machinery were vital in identification of sleepy macrophages, which is a transient state where transcription factors controlled the epigenetic remodeling and expression of genes involved in pro-inflammatory cytokine expression and recruitment of immune cells.IMPORTANCELeishmaniasis is an endemic affecting 99 countries and territories globally, as outlined in the 2022 World Health Organization report. The disease's severity is compounded by compromised host immune systems, emphasizing the pivotal role of the interplay between parasite and host immune factors in disease regulation. In instances of cutaneous leishmaniasis induced by L. major, macrophages function as sentinel cells. Our findings indicate that the plasticity and phenotype of macrophages can be modulated to express a cytokine profile involving IL-10 and IL-12, mediated by the regulation of transcription factors and their target genes post-L. major infection in macrophages. Employing sophisticated methodologies such as single-cell ATAC sequencing and computational genomics, we have identified a distinctive subset of macrophages termed "sleepy macrophages." These macrophages exhibit downregulated housekeeping genes while expressing a unique set of variable features. This data set constitutes a valuable resource for comprehending the intricate host-parasite interplay during L. major infection.


Assuntos
Leishmania major , Leishmaniose Cutânea , Humanos , Citocinas/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos , Leishmaniose Cutânea/parasitologia , Interleucina-12/genética , Interleucina-12/metabolismo , Fatores de Transcrição/metabolismo
18.
PLoS One ; 19(2): e0298458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381750

RESUMO

Cutaneous leishmaniasis (CL) caused by Leishmania braziliensis, is a disease characterized by well-limited ulcerated lesions with raised borders in exposed parts of the body. miRNAs are recognized for their role in the complex and plastic interaction between host and pathogens, either as part of the host's strategy to neutralize infection or as a molecular mechanism employed by the pathogen to modulate host inflammatory pathways to remain undetected. The mir155 targets a broad range of inflammatory mediators, following toll-like receptors (TLRs) signaling. In this work, we evaluated the effects of the expression of miR155a-5p in human macrophages infected with L. braziliensis. Our results show that miR155a-5p is inversely correlated with early apoptosis and conversely, seems to influence an increment in the oxidative burst in these cells. Altogether, we spotted a functional role of the miR155a-5p in CL pathogenesis, raising the hypothesis that an increased miR-155 expression by TLR ligands influences cellular mechanisms settled to promote both killing and control of parasite density after infection.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , MicroRNAs , Humanos , Leishmania braziliensis/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Leishmaniose Cutânea/parasitologia , MicroRNAs/genética , Apoptose/genética
19.
ACS Infect Dis ; 10(2): 467-474, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38189234

RESUMO

Cutaneous leishmaniasis (CL) is a polymorphic and spectral skin disease caused by Leishmania spp. protozoan parasites. CL is difficult to diagnose because conventional methods are time-consuming, expensive, and low-sensitive. Fourier transform infrared spectroscopy (FTIR) with machine learning (ML) algorithms has been explored as an alternative to achieve fast and accurate results for many disease diagnoses. Besides the high accuracy demonstrated in numerous studies, the spectral variations between infected and noninfected groups are too subtle to be noticed. Since variability in sample set characteristics (such as sex, age, and diet) often leads to significant data variance and limits the comprehensive understanding of spectral characteristics and immune responses, we investigate a novel methodology for diagnosing CL in an animal model study. Blood serum, skin lesions, and draining popliteal lymph node samples were collected from Leishmania (Leishmania) amazonensis-infected BALB/C mice under experimental conditions. The FTIR method and ML algorithms accurately differentiated between infected (CL group) and noninfected (control group) samples. The best overall accuracy (∼72%) was obtained in an external validation test using principal component analysis and support vector machine algorithms in the 1800-700 cm-1 range for blood serum samples. The accuracy achieved in analyzing skin lesions and popliteal lymph node samples was satisfactory; however, notable disparities emerged in the validation tests compared to results obtained from blood samples. This discrepancy is likely attributed to the elevated sample variability resulting from molecular compositional differences. According to the findings, the successful functioning of prediction models is mainly related to data analysis rather than the differences in the molecular composition of the samples.


Assuntos
Leishmania , Leishmaniose Cutânea , Animais , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Camundongos Endogâmicos BALB C , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/parasitologia , Modelos Animais , Aprendizado de Máquina
20.
J Proteomics ; 295: 105088, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38237666

RESUMO

Leishmania parasites cause a spectrum of diseases termed leishmaniasis, which manifests in two main clinical forms, cutaneous and visceral leishmaniasis. Leishmania promastigotes transit from proliferative exponential to quiescent stationary phases inside the insect vector, a relevant step that recapitulates early molecular events of metacyclogenesis. During the insect blood meal of the mammalian hosts, the released parasites interact initially with the skin, an event marked by temperature changes. Deep knowledge on the molecular events activated during Leishmania-host interactions in each step is crucial to develop better therapies and to understand the pathogenesis. In this study, the proteomes of Leishmania (Leishmania) amazonensis (La), Leishmania (Viannia) braziliensis (Lb), and Leishmania (Leishmania) infantum (syn L. L. chagasi) (Lc) were analyzed using quantitative proteomics to uncover the proteome modulation in three different conditions related to growth phases and temperature shifts: 1) exponential phase (Exp); 2) stationary phase (Sta25) and; 3) stationary phase subjected to heat stress (Sta34). Functional validations were performed using orthogonal techniques, focusing on α-tubulin, gp63 and heat shock proteins (HSPs). Species-specific and condition-specific modulation highlights the plasticity of the Leishmania proteome, showing that pathways related to metabolism and cytoskeleton are significantly modulated from exponential to stationary growth phases, while protein folding, unfolded protein binding, signaling and microtubule-based movement were differentially altered during temperature shifts. This study provides an in-depth proteome analysis of three Leishmania spp., and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts. SIGNIFICANCE: Leishmaniasis disease manifests in two main clinical forms according to the infecting Leishmania species and host immune responses, cutaneous and visceral leishmaniasis. In Brazil, cutaneous leishmaniasis (CL) is associated with L. braziliensis and L. amazonensis, while visceral leishmaniasis, also called kala-azar, is caused by L. infantum. Leishmania parasites remodel their proteomes during growth phase transition and changes in their mileu imposed by the host, including temperature. In this study, we performed a quantitative mass spectrometry-based proteomics to compare the proteome of three New world Leishmania species, L. amazonensis (La), L. braziliensis (Lb) and L. infantum (syn L. chagasi) (Lc) in three conditions: a) exponential phase at 25 °C (Exp); b) stationary phase at 25 °C (Sta25) and; c) stationary phase subjected to temperature stress at 34 °C (Sta34). This study provides an in-depth proteome analysis of three Leishmania spp. with varying pathophysiological outcomes, and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts.


Assuntos
Leishmania braziliensis , Leishmania infantum , Leishmaniose Cutânea , Leishmaniose Visceral , Parasitos , Animais , Leishmania infantum/metabolismo , Proteoma/metabolismo , Temperatura , Leishmaniose Cutânea/parasitologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...